
60T!N-5 =LEYEV

oXCITATI1t JF CIENCY OF jURFACESA S0 OVER g)RBZJG~TEDCTAL AND.DOBCRIGTE)TA
-~D IN IELECRIC SlB NA OUND PLANE

I ~ ~ ~ s IA F /m

D~fIBU!ONSTATEMENT A
£ppmeod for public releame

Diutzibutica Unlimited

TECHNICAL RESEARCH GROUP
17 UNION SQUARE WEST
NEW YORK 3, NEW YORK

CONTRACT NO__AF19(6 4)-13d7

79 09 2103



ABSTRACT I
Corrugated metal (and "doubly corrugated metal") is

an anisotropic boundary which supports only a hybrid surface
wave mode in directions other than parallel or perpendicular
to the corrugations. The mode phase velocity is a function
of direction. To determine the excitation efficiency of these
modes a three dimensiona. analysis is performed generalizing
the r sults of Cullen LlJ and utilizing the author's previous
work L2j.

The surface waves are shown to sseks many of the
properties of plane waves in a two dime Aional anisotropic
medium - notably that the energy prop ation is radial and
not generally normal to the wave fro ts. Radial propagation,
however, does not imply that the pr ry pattern of a feed and
the resulting far pattern of the s rface wave are the same.
The hybrid plane wave component o the spectrum of the source
which propagates in a direction arallel to the ground plane
with the natural surface wave phase velocity of the boundary
in this direction is observed in the far field in a direction
(9 not generally equal to V ! Moreover the excitation efficiency
is not independent of V,_ Therefore, the possibility of focussingi
by an anisr .oundary remains.

In Part II Cullen's formul for surface wave excitation
efficiency over a dielectric slab and ground plane is also
generalized to thick slabs. The wide range of efficiencies
obtainable as a function of slab thickness, dielectric constant,
and source height is related to many of the difficulties ex-
perienced in constructing surface wave antennas.
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PART I

EXCITATION OF SURFACE WAVES IN FREE SPACE
OVER AN INFINITE PLANE ANISOTROPIC BOUNDAR

INtDOOiCTIO 4

CullenLJ has considered the excitation efficiency of a

surface wave over an infinite plane corrugated metal boundary

launched by an infinite line of magnetic current parallel to the

corrugations. In this paper we consider the more general problem:

of an arbitrary source over corrugated metal and other boundaries

to be described.

From a three dimensional point of view corrugated metal is an

anisotropic boundary. The surface waves excited on it have phase

velocity dependent on the direction of propagation and many of the

other properties of plane waves in a two dimensional anisotropic

medium. The surface wave front created by a point source near an

anisotropic boundary is, in fact, a more complicated curve than the

elliptical wave front of a point source in a two dimensional aniso-

tropic medium. The boundary anisotropy may cause focussing or de-

focussing of the source - a phenomenon with no counterpart in Cullen's

two dimensional problem.

In practical microwave work one is sometimes confronted with

a three dimensional problem in which there is a plane of symmetry

both with respect to the geometry and with respect to the incident

field. In this case it is common to assume that the solution

to the problem in the plane of symmetry is not very different
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from that of the "two' dimensionalized" problem which one obtains

by assuning that the incident field and the geometry are the

same in the plane of symmetry as in the original problem and

are independent of the coordinate perpendicular to this plane.

This assumption is implicit in (:1 J, for although in the main

body of the paper Cullen clearly states that he is solving a

two dimensional problem, in his section on experimental veri-

fication he describes a three dimensional set up. His ex-

perimental source is a half wave long slot rather than the

infinite magnetic line current assumed in his theory. The

failure to distinguish between these two sources, might very

well not offend the microwave intuition of anyone. How -

ever, in this paper the efficiencies of surface wave excita-

tion are compared for the two sources and they are found to

differ both because of inherent differences between two and

three dimensions (this applies both to the corrugated and to

the dielectric clad ground plane) and also in the case of the

corrugated ground plane, because of the anisotropy. In certain

cases the difference may be numerically appreciable.*

If the corrugations are parallel to the plane x - 0

and the z axis extends out of the grooves then in the two

dimensional case the boundary is characterized by a normal

impedance condition:
(1) x --

,,-o
me----- ---------------------------- --- -- -- ------

* See Figures 9., b, c, and d.
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If the thickness of the teeth of the corrugations is negligLble

4compared to the gap between them then

(2) Z = -iF tan(kd)

where d is the depth of the grooves and k - c/'e is the

free space propagation constantC1 J. The same elementary con-

siderations which lead to (2) show that

Before proceeding it is useful to generalize the problem

from the case of ordinary or single corrugations to the case of a

"doubly corrugated surface" shown in Figure 1.

x

y dy

FIGURE NO. 1
DOUBLY 'CORRUGATED SURFACE
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Such a surface may be made by milling on a flat metal plate

a set of parallel grooves of depth d , width g , and tooth

width t , then rotating the plate 90* and milling a second

set of grooves of depth D, width G, and tooth width T. If

the x direction is taken parallel to the first set and the y

direction parallel to the second set, then to replace (1) - (3)

we have the following boundary conditions

(4 t -z -i,_tan (kd)

y

El
(5) ~ Iz - - A~i~)F tan (kD)

x Z 0

Here G, T, g, and t must all be assumed small compared to

the wavelength. Obviously, if we take D- 0 or G = 0, we

return to the case of single corrugations.

SOLUTION OF A PLANE WAVE INCIDENT ON A DOUBLY CORRUGATED BOUNDARY

The two normal impedance conditions (4) and (5)

determine the scattered field when any field is incident

upon the surface. This will be shown in general later. Let

us first assume that a Th plane wave is incident at angle 0

to the outward surface normal with the plane of incidence at

angle V to the positive x axis. Let

(6) p ksinG, w - kcosO = ki2

and leto, 0, and z be the cylindrical coordinate system

associated with the rectangular coordinates in the usual way.

Then the incident plane wave field may be written as
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(7) H- iws+ipcws( (sinV, -cosV, 0)
w

ciE - e'iWz+iPOcos(OV)(cosV, sinY, -- )

We use here the notation (a, b, c) for the x, y, and z

components respectively of a vector.

In order to satisfy the boundary conditions (4) and

(5) it is necessary in general to postulate two plane waves

reflected from the surface, one TE and one iN, rather than

simply a Th reflected plane wave as is sufficient in the case

of an isotropic boundary condition. Mathematically, this is

true simply because we need in general two reflection coefficients

Rl and R to satisfy the two conditions (4) and (5). Let the

reflected IM wave be
liWZ+ip/Mcos (0- V )

(8) H (sin , -cosV, 0)
w

wEE R eiwz+iPI°S ( 0  )(-cosY, -sin Vw)

and the reflected TE wave be

(9) kH - R2eiwz+ippcOs ( 0 V ) (cosy, sinY, -- -)

wwa i"I s ¢  (sinyr, -cosy, 0).

Each of these waves satisfies Maxwells equations and propagates

outward to infinity. The total field will satisfy the boundary

conditions if, as we find upon substitution in (4)-(5),
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R 1 -

)-R + =,)sin+ - (l + g-)cos

sinV

14 1 )cosV NY 2 w (+ )sinV

wher wehcvZse

CosV (- 1 1

This pair of simultaneous linear equations may

readily be solved to yield

(11) (YAd )( YX+1) sin + ( V + X) (YX0 +1)c Co2

(,Y-X 0) ( X+l)sn + ( y-X)~' (Yx+l) cos V

2(Xsin2 K + X co 2 V +Yxxo)
1 + 2 (Xcoszy+ Xsin2l-f) + Y (1-XXO)-Xcos 2 V-Xosin 2V

(12) R2 M2 sin~c os V Y (X0 -X)
(12)~ -(Y-xo,)(YX+l)sin 2 V+ ('V-X)OYX +l)cos2

where we have set

(13) x if ,x iz f

In the lossless, doubly corrugated surface case, X and X

are real. If Y is real and positive the reflected waves

are surface waves traveling in direction ~"

We have thus solved the problem of reflection of

an incident Th plane wave. In order to do the same for a

.... ..... . ,. . .... .............. 'lLn&'q L.,h,,.A* il d~P AA I' A M, -4,l
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TE plane wave, we can use the duality principal on all of

the preceeding equations. The duality principal states that

these equations remain correct under the substitutions:

(15) E t-_ H
jL --"-- -(

z 0 -l/z o

X - l/X 4,

TEj TK

if these substitutions are made wherever these symbols occur.

The results give the solution for the TE plane wave. An

arbitrary source can be resolved into two sources producing

a continuum of TI and T4 plane waves respectively. This is

proved in [2). We will next show how to find the total

solution for the Th part of a general source. When this has

been done, we can apply the substitutions (15) to the Th

solution in order to yield the solution for the TE part of

the source, and thus the total solution. Bearing in mind that

there is no essential loss in generality thereby, we confine

our attention exclusively to a Th incident field for the

remainder of the paper. Before doing so, however, it is

worth noting that the poles of R, and R2 as functions of p

are unchanged by the substitutions (15). This implies, as

we shall see, that in general the surface waves which can be

produced by TE and TH sources are the same. In any case no

surface waves exist other than those corresponding to the
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poles of R1 (or R2 , which has the same poles as R1).

SURFACE WAVES

When the denominator of R1 in (11) is zero a free

solution to Maxwell's equations can exist which satisfies

the boundary conditions and has many of the features usually

associated with a surface wave. We shall derive these

surface wave fields in a later section. Let us, for the

present, however, simply examine when they can occur. The

condition for a surface wave is that its vertical attenuation

constant shall be o the particular value of Y which is
positive and satisfies:

(16a) )2(Xocos 2 V+Xsin2 ,)+ Yo(l-XX)-Xcos 2  -X sin2 V - 0

or

(16b) tan2 v V f(Vo)g( o) ,  f(y)" , g( Y) 1+ YX00 1 +r. -xXo

(16a) and (16b) are quadratic equations for Yo, having at

most two roots. These are:
, (17)(17)- jXXo-1 _0l+o)2 + (X-X )2sin22,

0o 0
YO 2[X + (Xo -X)cos7-V]

-X
When the denominator vanishes, tan2  --- -- and

x
2X + X° (l-tan2 V )

(18) -o 0
O (X-Xo)(l-xxo) (1+xz tanzV) (+tan V)

If X andX o are both positive, then the only positive value

of Yo corresponds to the positive sign for the radical. If



X and Xo are both negative, then the negative sign is required 1.

for the radical. If one is positive and the other negative,

either sign may be required. In order to determine the

number of positive solutions of (17) and some of their

properties as functions ofl ( we now consider various cases

separately.

(i) Pure Inductive Case

Assume X and X are both positive. Without loss in

generality, let X s Xo . For each t , there is then one and

only one Y satisfying (16). We may see this as follows:
0

The left member of (16b) is always positive. The right

member can only be positive if Yo is between Xo and X. In
0

the range Xo 4 r X, both f(,Y) and'g(Y ) are positive de-

creasing functions. Therefore, their product is also a mono-

tone function which decreases from infinity to 0 in this interval

x I

, g(Y)

x I

- Xo

G I
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Since the left member is a monotone increasing function

for O ,_V& w/2, there can be only one solution YO- Y

Furthermore, this solution equals X when V = 0 and decreases

continuously, as Vg increases, reaching a value Xowhen

Y/42. The values repeat periodically in the other

quadrants - as indeed they must - for, from the symmnetry

of the problem, there is no distinction between any angle

yKand the related angles 4,r-IK , or Tv. There-

fore Yois a maximum when ~(-0 and ir and a minimum when

r/2 and 3v/2, and accordingly

* /_o when 0OZ. e..r/2

o 0 when~' 0, r/2, r, or 3Y/2.

_(ii) Mixed Case: AL*-O, X0 ._ 0

(iia) XXc -l orX-* 1
0 X 0

_l/IXO f (y)

g ( )
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In this case, in the interval 0 Y' -11X 0 , both f(Y)

and g( Y) are positive decreasing functions, hence so is

their product. Equation (16) has a unique root here if and

only if

(20) Oi tn 2  x

0

For this root yI4.O. In the interval -- 4 - X,
00

f(Y) is positive and g(Y) is negative, so that there are

no solutions of (16). If Y - X, both f(Y) and g( ) are

negative decreasing functions so that their product is a

positive increasing function. Equation (16) then has a

unique root in this interval if and only if

(21) 0 6 tan 2 VA - o7
x

and for this root y' - 0. These facts may be summarized.. Xo)
as follows: Let m - mi - x Then m & 1.

We conclude that if tan2 r A m, there are two values of

Yo satisfying (16), one in the interval 0 V 6 -l/Xo

21and one satisfying X t . If m 6 tan V - there

is only one value of Yo satisfying (16) and it lies in

the interval 0 6 Y - /Xo  if m m- T or in

, Xif m - . If tanw- - (16) has no
0

solutions. The root in the interval 0 - £ - lI/x o is

a decreasing function of V :, i.e., 0 0, and the
0

root in the interval X A Y is an increasing function of

f1 : i.e., i * 0. This case is illustrated in Figure 7
0

with X-l1, X 0 -- 4.

TECHNICAL RESEARCH GROUP
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(iib) XXo h -1

-lx,

xx

f(~

The conclusions in this case are similar to (iia).

If tan2 'V A m, there are two solutions to (16), one in

the interval 0 A )1 !6 X and one in the interval -1/ox A

If m . tan2 W A 1 there is only one solution. It

satisfies -1/X g  Y if m -- To or O&- X if
0 a-

x0
M X..-- . Both cases (ii a) and (ii b) may be stumarized

together if we let M' mx X-m
Max 1  -1 in E XX-l

and m' - miin IX, -I/X o } • Then if tan2  m i, there are

two solutions to (16), one in the interval O k )1 - m'

(for which - .e, 0) and one in the interval M' 6 Y (for

which . 0). If m tan2 V ,  , there is only

II

one solution. It satisfies MH'6k Y if mn - or
01r



K 13. 1
0OigY mif m- 1

9  
. If tan2  there

are no solutions to (16).

WOii Mixed Case: X0-% 0 K 0.

Here if we let M" = max ti 4..)

two distinct solutions to (16), one in teitra

0:d.Y em" (f or whc 'S0and one in eirval

(for which Yo eO). Ifm mgtan V d thr

solonsolto.I.aife 'gY fmo

(iv) Pure Capacitive Case: K e 0, e - 0
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In this case, for each V there is a unique positive )O

satisfying (16). This value of Yo lies between -lIX and
0 I

-1/Xo . If we assume Xo / X, then Yo 0 .

FIELD PRODUCED BY A SOURCE OVER A DOUBLY CORRUGATED BOUNDARY

Equation (38) of reference [2] gives the represen-

tation of a more or less arbitrary incident TE field as a

superposition of plane and hybrid waves weighted according

to the far field of the 0-component of E for the source in

free space. Equation (125) of [22 gives a similar repre-

sentation for the scattered field. In order to utilize

these results here we must first employ the duality sub-

stitutions (15). We must then make a change in coordinates

(in [2] positive z points into the boundary). Finally we

must include the pair of reflected plane waves instead of

the single plane wave reflected from an isotropic boundary.

If these steps are performed correctly, we obtain the total

field, incident plus scattered, for a TM source:
(22) e2i ipjoCos-+iwz

H M i L e dpd ksinf(U++R 1j

-R wcosYU_ , kcosV(U++RlU. - R2wsinYU, RpU . .

.- pc os(0')+iwz dpdYVwcos(U++R1 U.)i w

-kR sin /U , wsinY(U++RU.) + kR2 cosU_ ,

-p (U+ + RiU)

A r
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The symbolism U+ and U has the following meaning: the

component of H , when the source is in free space,

assumes the form
eikr 1~.

(23) F(o,)>-- + O-) as r--oo
r r

where F(0,0), the "far field", may be rewritten in terms

of p - ksinO and 0- 0 as a new function

U(p, Y) - F(sin'lp/k, V ). An ambiguity exists in this

definition since the inverse sine has two values:

Y-0 as well as 0. The far fields in these two directions

are not generally the same, of course. (An exception in

the plane 0 - 0 is the magnetic line current along the

y axis. Here F(.O0) is a constant). U(p, y) is thus

generally a double valued function. In (22) we have

let U+ stand for the value of U(p, y') corresponding to

directions ior which 0 is less than r/2 and U_, the

other value, for which 0 exceeds v/2. Our problem now

is to obtain both the radiation field and the surface

wave field from (22). The former is the asymptotic

value of these integrals for large r, where p w rsing,

z - rcosO. The latter is the asymptotic value when.o is

large and z is fixed. Faced with the same problem for

the isotropic boundary case, the author required con-

siderable mathematical analysis in reference [2) to

obtain just the surface wave field rigorously. The

method employed there cannot apply directly here since

now the reflection coefficients have an angularNMIl
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dependence: R, and R2 are functions of )f.

Instead here we outline a proof which it is believed

could be made rigorous though not without great effort. We

present it simply as a plausible argument. We begin by writing

each of the integrals of (22) as a sum of two terms, one contain-

ing the 'e'integration from -r/2 + 0 to r/2 + 0, and the other the

integration over the remaining interval from v/2 + 0 to 3u/2 + 0.

We indicate this symbolically with R asO r/2 0+3r/2
(24) HmR l1+2, 1 + H2 5 1

0 €-r/2 1+/2

since there is no need here to bore the typist with the lengthy

integrands. Now we observe that U(p,Nf) - U(-p, V/ + ir), since

the direction (0,0) is the same as (-0,0+Y). Thus, if in the

integrand of H we make the change of variable "V.' - + r,

p -p, we find that

*0+4w2

(25) H2 "
"" -i/2 "

So that

S0 + ir/2

(26) H

€-r/2

(The details of induntation of the p integration

swtour about the poles of R1 and R2, of course, must be properly

I d1.d). In the p integration we have succeeded, therefore,
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in obtaining an infinite contour which may - if the integrand

behaves properly at infinity - be deformed around the poles and

branch cut. In the V integration, we have avoided the stationary

phase point in the backward direction ' = 0 + r and are left

with the only physically reasonable stationary phase point at

=-0. An estimate of U(p, i ) for large p is required. It

is not hard to show, from the formulas of [2] , that

.40Jm(p) - ROICep)
(27) U(p, W) - O(e p - w), P--o

where o is the radius of the smallest sphere containing the

source and 9 is the minimum distance of the source to the plane

z - 0. A formula similar to (27) would be required in a rigorous

proof.

1ADIATION FIELD

The radiation field follows from a stationary phase

evaluation of the integrals. When the observation direction

is (0,0) the stationary phase point occurs when 4"- 0,

p - ksinO (and w - +kcosB). The results may be most simply

expressed in terms of the 0 and 0 components of the field as

follows:

(28) H0 - F(B,0) + R1V(7-o,)

04 - -a2r(T-O0)

go -



where R.and R2are evaluated at Y -icoso, 1 -0

(29)(Zcs B- X)si 20 + (Xocos *-X)cos2o + icosO(l+XX0 )

(icosO+X )(1-LXcosO)sin20 + (icosg+X)(l-iXocosg)co$20

2(LXX cosO - Xsin2  
- XC0s22)

+0

(xcsO . 20)cos2g 2 cs(U 1

2sin0cos~cosO (X-X)

(X-os2  +Xi 20)cos2q icosq(XX 1) + Xc60+ Xosin2o

The power flow between two meridians: 0 .e 0/- 01 is

(30 sinOdBO d0(EAi) -
00

0

where Fi is the unit radial vector. Substitution of (28)

yields
'r/2 0

(31) F singdO dO~ F(e10O)+RF(vr-o0)J 2 +

0 ~00

The first term in the integrand corresponds to the unde-

polarized field, the second term to the depolarized field.

The two fields are orthogonal and their energies are additive.
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SURYACZ WAVES

We observe that the poles of R1 and R2 are functions

of V. Hence we perform the p integration first. While,

as mentioned above, our derivation is not meant to be completely

rigorous, it is worthwhile to determine carefully whether the

poles are actually crossed when the p integration contour is

deformed. The whole question of the existence of the surface

waves is at stake here. For this purpose, as is customary in

similar problems, let us introduce a little conductivity into

the medium. That is, we assume thatA(k) (the imaginary part

of k) is slightly positive. The integrands of (22) have branch

points at p - k and -k. The integration contour is along the

real p axis and we have taken branch cuts as shown in the

figure (the same as i ref. [2) ].
, ju(p)

_-k pole e
-k ae ")

branch cuts

FIGURE NO. 2

J h S
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We must deform the contour into the upper half plane in order

to safely neglect the contribution from infinity. We shall obtain

a residue from a pole, therefore, only if it lies in the upper half

plane. Let us show that all the poles which are real whenJ'm(k) - 0

do lie in the upper half plane whent 9 m(k) is positive and approach

the real axis asvjm(k) approaches zero. Equations (4), (5), and (13)

imply that both X and Xo take on a slight positive imaginary part when

k does. Suppose for the moment that"V is fixed, then (16) defines

YO as a function of k . When .A(k) is zero, of course, Yo is

real. Implicit differentiation of (16) with respect to im(k) (bear-

ing in mind that all three quantities ' X, and Xo are functions

of Im(k)) shows that the derivation oftYm( Yo) with respect to

ju(k) is always positive when ' X, and Xo are real. Thus the

introduction of slight conductivity moves the pole (or poles) in the

-plane from the real axis slightly into the upper half plane.

The cut p plane of Figure 2 is mapped into the region lying to

the right of the image of the branch cuts in the Y plane (Fig. 3),

YI
pole [jpole /

cut p plane

FIGURS NO. 3

ALM&-A
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Since p, k .+

(32) - Ji7+ + k Y
-~ ~ S~m(k)17 tm)

By setting Jm(k) equal to zero in (32), if Y0 is positive, we

see that the left member is positive. Every pole in the

plane which maps into the cut p plane corresponds to positive

YO and hence maps into the upper half of the p plane. Thus

the residues of all poles are actually obtained.

Taking the limit as Jm(k) vanishes, we find from the

residue theorem the surface wave terms

(33) H- i u(T,,,)e'k Y oz+ik/ ocos(O- V) (r sinnV
- 0r12

-i or 2 COS V, rlCOSV - i or2 Sin't, r2 / o)dV

Es~c~k PL2, U(k/Y° )ekYoz+i'kt°/fcos(O'V / (i X r cos"

O-/2

28inY, i YorlsinV + r2cos, -r1 4o)d V

where, we have used our previously defined vector notation and

have let Oo be the "equivalent index of refraction" of the

surface wave:

_ " 2
(34) ro+
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and

(35) 2k Y) (Xcos V,+Xsin V+ YOXX,0)
- - reel1  M ~> ~i 2VXcsV

- ea2l-~t ;sn~rcoV 2 ( 2x 1) 2x )
-/o Y Xsin i +Xcos V XO +

0 0

(as there may be in the mixed case XX,4i0.), then there is one

term of the form (33) for each value of Yo

We next evaluate the integrals for larger by the method

of stationary phase. It is at this point that an important

difference enters between the present problem on the one hand,

and the two dimensional or isotropic boundary problems on the

other hand. The difference is that in the exponential coefficient

k~3 cos(O- V) of /0 , 61e factorooe 0 depends on Y . The stationary

phase point, thus, in general does not occur at Y .It
occurs at the root of

(36) _d+ 1I o(-V)

If we call this root lf()then, by carrying out the

dif ferentiation we f ind

(37) 0- -tan ( 10o)v-ta 1 A

nAR 
GRU
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where If ) o , and the principal value of the inverse0 0

tangent is implied in (37). Since ;o is given as a function

of Vf by (17), for each 0 the stationary phase point V may be

found, in principal, by means of (37). Calculations for simple

corrugations (Xo - 0) are graphed in Figure 4. It appears

possible in certain cases, to have more than one stationary

phase point, i.e., two or more values of V for a given .* We

shall consider first those cases where only a single stationary

phase point occurs.

For the stationary phase evaluation we also require

(38) 1

s(O) 2 )0 cos(0-))

2 2 2 2 2 '2.5 - (l+ , +Yo , Y0(o >'o( - 2 '
(1+- Yo -o YO

(fl+'Y 4)(l+ 2 2~ + 2 1.t2)] 1/2)

We obtain finally the surface wave field as
(l+i) 0 _j - okz+i*,. cos (0-)ft - 2Y- U (k 0,)e -(-rising"

(39) H " ,,1Vo

- i or cosV,, r cosV-i 'orasin, r21.o>)

g- (l+i), 0 k o 2 U(k V)e'okz+ik/,tcos(0-') (i'rlcosy

00

-r2siny, i Yorlsln + r 2cosy, - rl/do)

af e--------------------- ------------------------------------------------- e

* This is shown in Figure7 for X - 1, Xo - -4.

C UP
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The power flow between the meridians 0o0 0z0l is

00
(40) Ps - dz. /Od$!(E s x H

f0 0

Ysi 3 /,.V)12dO((rl2-r2)cOsV-2i krrIiy

00
12r2)snY + 21 orlr2cosy,

where V is defined as a function of 0 by (37). The surface

wave power flow is thus parallel to the surface. The radial

component over an element dO is

(41) .0 3 JU(k,. y) 12 2 2

of 2kaII 3  ' ° rrx i" (-

The azimuthal or 0-component is

(42)p" . /P 2 2ks , jo2 ((r 2 2"r 2)sin(" V)+2irorlr c°" ( Y

(4) 0 a/u~ r/ orO3 2 2 cos(0OV,,)

By direct but lengthy computation (details in Appendix I), we

can prove that

(43) (r 2 2-r )in(-) + 21orlr2 cos(0-'V)n 0.
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As a consequence,

(44) Poo- 0

and 3 U(k/, (r 1
2 -r 2

2 )
(45) Ps P 21 o s(0 2)

5,. 2kwe 8s Y0 ~o

Equation (44) implies that the power flow is always radial.

The direction of power flow is, by definition, the direction

of the ray. Thus the rays corresponding to the surface waves

are straight lines. One can also show that the extremals for

least time in an anisotropic, homogeneous medium are straight

lines, so that the rays not only denote the direction of power

flow but also are the quickest possible paths for energy flow.

Fermat's principal is thereby verified for this case.

However, the rays are not normal to the wave fronts.

The wave fronts are defined as in the isotropic case either

as (a) the contours of constant phase or (b) solutions to the

eikonal equation. We proceed now to find the equation of the

wave fronts and to show that these two definitions are equiva-

lent in the present case. For simplicity we suppose that the

phase of U(k/., Y) is independent of y, as in the case of a

magnetic dipole source.

At a fixed instant of time (or fixed value of/ ) the

surface wave traveling in direction V has advanced from the

origin a distance o1, o . Figure 5 shows, for example, four

neighboring phase fronts. The set of all these phase fronts
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form the envelope of a curve C which is the wave front. To

prove that C is a wave front, first repeat the process just

described for a slightly larger value of ,o, say/O+&/*

There results a second enveloped curve C1 . To show that both

C and C1 are wave fronts, observe that the distance between them

measured at any point along the normal to either of them is

(correct to first order in &/e ) A/I40 , where ,oo is evaluated

for the direction V of this normal. This establishes the wave

fronts as a set of curves whose orthogonal trajectories or wave

normals separate any two nearby curves by distances proportional to

the wave length in the normal directions.This means that they

satisfy the eikonal equation. We proceed to derive the equation

of the wave fronts:

The equation of the phase front traveling in direction v
is

(46) xcos Y + ysin Y - 101,40

These lines are the envelope of the wave front.

The wave front is thus given by the intersection of (46)

and its derivative:

(47) -xsinVr + ycosY -

The equation of the wave front is therefore

(48) x- cosy + sLinY
10

y 0;" ' cosY' + siny'

..... .o .. .•
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If we let (r,$) be the polar coordinates of the wave front then

setting It - rcos0, y = rsin0 in (48) we find

and
jtan V +~4

(50) tanO A-
- - f + A'tany

The latter may be rewritten as

(51) tan(0-V) = 40

- 10
Comparison of (51) with (37) shows that 0is the same as the

stationary phase observation angle. Also (51) implies that

(52) cos(0-y) '4

A 2 2

so that (49) may be written as

(53) rA~cos(O-V)

Comparison with (39) shows that the wave front given by (48)

in rectangular coordinates or (49) in polar coordinates is

also the contour of constant phase in the far field of the

surface wave. Definitions (a) and (b) are therefore both

verified.

=WKAUSOI WITH RWAGATION INA CRYSTALLINE MEDIUM

It Is instructive to compare the propagation of
surface waves over an anisotropic boundary with the propagation
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of plane waves in a homogeneous, anisotropic medium such as a

crystalline medium. The .latter is described in considerable

detail in Planck's "Theory of Light" [3)

One basic difference between the two phenomenon is

that the propagation directions of the surface waves all lie

in the plane of the surface, while many of the interesting

features of the crystalline propagation (such as the existence

of the primary and secondary optical axes) depend on the three

dimensional properties of the anisotropic medium. If we restrict

the latter to a two dimensional medium, however, some interesting

comparisons can be made. In each case, a single infinite plane

wave propagates energy in a direction which does not coincide

with the normal to the wave front unless the latter is in a

principal direction. In each case, energy from a point source

propagates along the radial lines from the source although the

wave fronts are not concentric circles. However, the dependence

of phase velocity on direction is more complicated in the surface

wave case than in the crystal case. While in the

crystalline medium the wave fronts are ellipses; on the aniso-

tropic surface the wave fronts are more complicated curves.

Examples of the latter are shown in Figures 4a, b, c and 7.

In the crystalline medium, apart from certain exceptional

directions, exactly two waves can and do propagate from a

source. These are cross polarised from each other, and have

different phase velocities. In each wave E and H are
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perpendicular to S the direction of energy flow. On the

other hand, on the anisotropic surface, in each direction

either zero, one, or two waves can propagate each with its

own phase velocity. Each wave is a hybrid mode, a combination

of TE and TH modes. Each of the latter is a separate solution

to Maxwell's equations but only a certain proper combination

of the two satisfies the boundary conditions. This same com-

bination guarantees that the surface wave energy flow from a

point source will be radial (i.e., that Equation (43) holds).

The energy in the hybrid mode is not the sum of the separate

energies in the TE and IM parts so that there is energy

coupling between the latter. E and H are not usually

perpendicular to S.

The radiated field reflected from the anisotropic

boundary, on the other hand, has none of the properties of

propagation in an anisotropic medium. For the radiated field,

E , H, and S are an orthogonal set and S is perpendicular

to the wave front which is spherical. While the radiated field

generally has both TE and TM modes (even if the source is pure

TE or pure 7M), the power flows of these modes are orthogonal to

each other.

EFFICIENCY IN A PRINCIPAL DIRECTION COMPARED WITH CULLEN

When i - 0, then from (17), )1 - 0 and, from (37),

0 - 0. We observe from (16) that o X or -1/Xo (if these

are positive). Substitution of -1/X o for 'o and zero for "9 -

...... rrAhr1_&bA eU
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into (35) yields rI = r2  0 0. Hence there is no excitation of

the mode for which Yo - -11Xo in the direction 'r 0 even if

this mode appears to be a free solution of Maxwell's equations

and the boundary condition. For the o= X mode at ( - 0,

(54) rl W 2kX2  r2 0.

From (17), correct to second order in

2 2• 2(Xo-X) (1+X2

(55) Yo " x +
l+XXo

So that from (37), correct to first order in

2X(X-Xo )
(56) 0-v(l+ 0

l+XXo

From (38)

2X(X-X)
(57) s(O) -- l+X (1 + -+xx )

0

Finally from (45)

(58) P 2 xU(k .0,o) •

(A) (+ X(X-X0 )WC(I+ 1+zX°

For the purpose of comparing our result with Cullen's r1J

let us define the efficiency I of surface wave excitation in a

given direction 0 as the ratio of surface wave power radiated

outward between the meridian 0 and 0+dO to the total power

radiated outward between these meridians in the limit as dO

approaches zero. From (31) and (57), we see that for 0

L ... . CAD gann
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P,/Pr
(59) 1 + rs/ r

where

(60) - S 4irX U (k 4o,O0) 2

Vr ,2X (X.Xo) /2 2
1+xo sinedO IF(e,0)+R 1

0 o

where

(61) R 1 + 2X(iXocos-l)
XOCcos - icoso(XXo-1)+X

Apart from the fact that Cullen's formula for efficiency

applies only to the case X0 - 0 (single corrugations), there

are three differences between our formula and his.

(1) A factor C, l+X 2 is missing from the denominator of

(60). The absence of this factor appears to be an inherent

difference between the two and three dimensional probivis, since

its counterpart is also missing in the rigorous expression

(130) [2] for the surface wave in the three dimensional iso-

tropic case. The difference between the two and three dimen-

sional problems in this respect may be traced back to the

difference between the three dimensional integral representa-

tion for the field as given by (22) and Cullen's integral

representation (19) of ['J. The expressions are almost the

same, but the factor p" in the integrand of (22) has no

counterpart in (19) of CI1. This factor p is the Jacobean

of the change of coordinates in the transform plane from

.1..
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rectangular, with area element dudv, to polar, with area element

pdpdy . (This change of coordinates is carried out explicitly

in (2) ). The same change of coordinates in the two dimensional

case need never be explicitly considered since it degenerates

to the identity transformation.

When the residue theorem is applied, p is replaced

by ,4o which/at 0 - Oequals s-1 . When the latter factor

is squared for the computation of power, the factor of IfX

which appears in the numerator of Cullen's expression, (and
would otherwise also appear in (60))is cancelled (Note that

Cullen uses P for our X).

(2) In computing total radiated power, we must integrate

over a large sphere, not over a cylinder as in Cullen's case,

so that the factor sine appears in the integrand in (60) but

does not appear in the analogous expression (35) of [1),.

Again this. factor is a Jacobean which is not the same in two

and three dimensions.
2X(X-X o)

(3) The factor I + r 0IAX appearing in the denominator

of (60) does not appear in Cullen's expression. It arises

from the fact that the wave number k/,o is a function of

direction V , i.e., that the boundary is anisotropic, so

that s is a function of 0. In Cullen's case s equals

-,4o and is independent of .To say the same thing in more

physical though perhaps imprecise terms: the fact that the

wave fronts of a point source are not circles implies that,

_ R UP
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in the stationary phase evaluation, the far field will vary

with the curvature of ;he wave front at the stationary phase

point - the flatter the phase front and the mac e "stationary"

the stationary phase point, the larger the contribution to the

far field. This phenomenon has no analogue in the isotropic

boundary case.
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]Proof of (43):

It is sufficient to prove

(l) tan(-) =2L Y rrr1  - 2

or in view of (37)

(A2) - YO 2ir1r2

1+ YO ri -r2

From (35)

(A3) 2irlr2  2SC(X-Xo ) YO(XC2-XoS2+ ro~xo )

2 z2 2~ 2 2rl -r2  (XC +XoS2+ roXXo) + S2Co(X-X

where we abbreviate

lA) S = sin , C - cos

Since Yo is the root of the denominator in (11) we

differentiate this denominator to show that

(A5) yo(2 Yo(XoC2+XS2) + 1-XXo)+2(l+ , 2)(X-Xo)SC - 0

This implies that

(A6) - y 2(X-Xo)SC 2(X-Xo)SCl+2 M ,Yo(XoC2 + S)+1xxo  ".+ +Xo 1 " '
2  +XS)+- (+XX +(X-X o  uin 2V)

where the sign alternative is to be chosen to insure equality.

We find then that (A2) will hold if and only if

(A7) ),o(XC 2+XoS2+ YoXXo)(2Yo(XoC2+XS2) + -Xxo ) -

(XC2+XoS2+ Yoxxo)
2 + S2C2 2o2(X-Xo)2



'A () may be written as 3

(AS)

3 (2XC) (X0C2 +xS2 )+ r 2 (XX-2(XX) 2 +2XC XS)x 2 s)
-s~~c 2~x 2x2  ~ X- (XC 2+XS 2) XC +0o

_S2C2(X-X) O(C 2+X0S2 )(l-3XX) X2O22 0

Since from (16)

(M9) Yo.,(XC +xS) -C c+XOS2 + YOXO,.

we may substitute for the cubic term in Y.in (A8) reducing this

to terms of second degree or less, which upon combination with

the remaining terms of (A8) yield

(AlO) 2((X0 2+X2)s2c2+XX0 (2C 4+2S 4 +2S 2C2 -1) )+ (1-XX 0)y

-(XC 2+ X S2 )2 M 0

The oeficiet o ~2may be factored by (XC +X0S ), and with

the cancellation of the latter, (Ala) reduces to (M9). Since

all the algebra is reversible, we have proved (43).



PART II
39.

EXTENSION OF SOMS RESULTS OF CULLEN ON
"THE EXCITATION OF PIANE SURFACE WAVES"

In [1] , Cullen has obtained a formula for the excita-

tion efficiency of surface waves launched over a metal clad

dielectric. The formula is based on the following assumptions.

(a) the dielectric thickness d is small compared to

the wavelength A

(b) the energy carried by the surface wave in the dielectric

is negligible compared to the energy carried by the surface wave

in the space above?

(c) an infinite horizontal magnetic line current is the

source.

For one application encountered at Technical Research

Group it was of interest to obtain a formula generalizing

Cullen's which drops the first restriction and replaces his

source by a finite horizontal magnetic line current. A restriction

on thickness is still invoked namely

but this is used to insure that only a single surface wave can

propagate. When the thickness is not small compared to the wave-

length, the assuption that the energy carried by the surface

wave in the dielectric is negligible is no longer tenable and it

is dropped here. It is rather surprising to discover that despite

the apparent imediate increase of complexity caused by the waiver

of these asstumptions, our final formula for excitation efficiency

L :_ ., . . . ...... .... , N . _ . .' . ,,f - ,, A - & . , -- - .,.+ : . .. . . .. ... . .=. ... ............ ........ ....... , '
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is hardly more complicated than Cullen's.

This section is not in the least self contained. Rather

we simply point out, line by line, what changes must be made in

Cullen's derivation when assumptions (a) and (b) are not made, and,

as a first step, we obtain an intermediate formula when only these

assumptions are dropped. In order to change assumption (c), we

then rely on the results of the three dimensional analysis given

in reference [2] and in the first part of this paper.

We use on the whole Cullen's notation. The first ex-

cepticn is that we let e be the relative dielectric constant

of the dielectric. However, in contrast to the first part of

this paper, now the implicit time dependence is eiwt and 0 is

the grazing angle rather than the incidence angle.

REMOVAL OF ASSUMPTIONS (a) and (b)

The reflection coefficient for a TH plane wave grazing

the metal clad dielectric surface at angle 0 is

R = isinO + t(cosO)
JsinO - Jr(cosO)

where

(2) *(t) = i tan (kd/J )

Section (10) of Cullen may now be read through expression

(44) if the latter is replaced by kf(cos). Cullen's formula

for the radiated power (34) remains correct with his f replaced

by ?(coso).

In order to find the formula for the surface wave power,

observe that equation (19) of [17 remains correct if k is
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replaced by kr(4/1k). The generalized reflection coefficient

(3) R$e)m u±,,)-

then appears in (19). Its residue at the pole u = k2 , where/4s

[ 12 k2 i

(4) 2ckl 2 (k2 - 1
2)

01(t.,, [,k,+,,ld(k, !,+,,+k?)]
The leading term of (20) [l] is then

(5) -k1 ovkl (Y+h) J/1 x clkc ,2

(2 -2 2(C-1) ek2+ k)d(k2 (k+l)+k 2

The power radiated in the surface wave, is then (instead of (36)[1J)

V2 e E...,d h 2
(6) )4k ° k 2 1

2 (k2  12)2- 1 2j"

]P-') 2 [k2 +kld(k2(E+l)..k2)J 2

where

(7) Ilm e 2 kly dy - l/ 2 k 1

0 2 2o6_

(8) 12 . - d cosy k dy !2 d Lcosd(k,6 
dy=

./ sin(2dik2a -A,,12)

,aL I + 2d 2-. 2

,.o.'(d Ik ,42
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Lot us now introduce a simplifying notation

(9) A " kn, kI, kjf - ,

where n is the equivalent "index of refraction". The surface

wave existence condition (43j of [1] may be written as

(10 £- tan (kd / J

so that (8) becomes
S(11) 12. (- 1)(+)-O .+ (e/k)A .

2 (e-n2)

The ratio of the power in the surface wave carried above the

dielectric to the power carried in the dielectric is

(12) I1 - ((-, 2)
+ E/.F

When kd4 l so that n2 -14 I this ratio is large, and the

term 12 may be neglected in (6) compared to II. In the general

case, however, 12 is not negligible, and (6) must be written

as

(13) K2h 3  EjIEn

n(-.) I+(kdf2-) (n2( +1)o)]

From (35) of [i the radiated power is

(14) 1

PR M k- LO°° V2  F2 (e)dO

0
and the efficiency is

(15) P,

PR + PS
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where
(16) PS e-2kh 2

n(G-) f+(kd 1)(n2 l) F2 (0)de
0

FINITE LINZ SOURCE

Two changes must be made in formula (16) if the line

source is finite instead of infinite. Consider any source

whose three dimensional far field pattern in free space is

uniform in the xy plane, i.e., independent of angle, and has

H perpendicular to this plane. The analysis of [21 - or of

the proceeding section - shows that an extra factor of n appears

in the surface wave field and hence n 2 in the surface wave

power. In the radiation field the power flow must be integrated

over a large sphere whose area element is ordinarily singdOdO -

but since 0 is now the grazing angle instead of the incidence

angle in the present notation - this factor is cos~dOdO here.

The do cancels the same factor in the surface wave power ex-

pression, if we consider the ratio of power flows per unit

azimuthal angle. The correct expression for efficiency is thus

(15) with (16) replaced by

(17)
PS ,ne n'- (E4-n2 )e 2kh9_nl

- 1) .. +(kd)n2(n :cosOF2 ()d9

0
Both additional factors in the three dimensional case tend to
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enhance the power in the surface wave at the expense of power

in the radiation field when compared to the two dimensional

case.

It is also well to point out that the preceeding formulas

for efficiency will in general be gravely in error if the source

is not symmetric with respect to a plane parallel to the ground

plane, and can be considerably in error if the source is anything

but isotropic in the xy plane. This is especially true for those

high values of efficiency which are primarily due to the cancela-

tion of the directed and reflected rays in the radiation field.

(see Fig. 10 of [l] ).

Figure 9 shows the two and three dimensional

efficiencies for four values of e vs h/A and d/x, the height

of the source and the thickness of the dielectric, respectively,

in wavelengths. The corresponding values of n2 are shown. The

values of h/A where the radiated field is zero at both 450

and 60* grazing angle are shown. These are not necessarily the

most efficient heights. If the conclusions of reference [51 were

to be taken literally for the dielectric clad ground plane then

at the former height the efficiency would always be 100%. Cullen's

conclusions based on the case e - 2.56, n2 - 1.25 also appear

not to be highly relevant for other values. The optimum height

for maximum efficiency is apparently often zero. Moreover,

the optium height, which is always a small fraction of a wave-

length, is not critically different from zero. The efficiency

does, however, depend critically on d/A (or n). None of these

conclusions are apparent from Cullen's work.

' ... __ __ ., .. .. .... ... ... ..- .. ... I 5. . tnuaA iL . D m " A S CM',, ' "'t D .. ,...... ... ,... ... ... . .. .... t
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ERRATA SHEET

Page 33, Line 9 and Page 34, Line 8, replace
"i + X2" by "

Page 33, Line 7, at end of sentence insert:

"The stationary phase evaluation of the 2integration

reduces this factor to (1+X2)1T4 . "

Page 43, Line 9 - replace "n" by "vn "

Page 43, Line 10 - replace "n2 " by "fnee

Equation (17) - delete factor "n" in numerator.

To the references add:

[7] Fernando and Barlow, "An Investigation of the
Properties of Radial Cylindrical Surface Waves
Launched over a Flat Reactive Surface",
Proc. of the Inst. of Elect. Eng., Part B,
May 1956, p. 307.
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